翻訳と辞書
Words near each other
・ Frobel
・ Froben Christoph of Zimmern
・ Frobenioid
・ Frobenius
・ Frobenius algebra
・ Frobenius category
・ Frobenius covariant
・ Frobenius determinant theorem
・ Frobenius endomorphism
・ Frobenius Forster
・ Frobenius group
・ Frobenius Institute
・ Frobenius manifold
・ Frobenius matrix
・ Frobenius method
Frobenius normal form
・ Frobenius Orgelbyggeri
・ Frobenius pseudoprime
・ Frobenius solution to the hypergeometric equation
・ Frobenius splitting
・ Frobenius theorem
・ Frobenius theorem (differential topology)
・ Frobenius theorem (real division algebras)
・ Frobenius's theorem (group theory)
・ Frobenius–Schur indicator
・ Froberg mutiny
・ Froberville
・ Frobisher
・ Frobisher (Doctor Who)
・ Frobisher (surname)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Frobenius normal form : ウィキペディア英語版
Frobenius normal form
In linear algebra, the Frobenius normal form or rational canonical form of a square matrix ''A'' with entries in a field ''F'' is a canonical form for matrices obtained by conjugation by invertible matrices over ''F''. The form reflects a minimal decomposition of the vector space into subspaces that are cyclic for ''A'' (i.e., spanned by some vector and its repeated images under ''A''). Since only one normal form can be reached from a given matrix (whence the "canonical"), a matrix ''B'' is similar to ''A'' if and only if it has the same rational canonical form as ''A''. Since this form can be found without any operations that might change when extending the field ''F'' (whence the "rational"), notably without factoring polynomials, this shows that whether two matrices are similar does not change upon field extensions. The form is named after German mathematician Ferdinand Georg Frobenius.
Some authors use the term rational canonical form for a somewhat different form that is more properly called the primary rational canonical form. Instead of decomposing into a minimal number of cyclic subspaces, the primary form decomposes into a maximal number of cyclic subspaces. It is also defined over ''F'', but has somewhat different properties: finding the form requires factorization of polynomials, and as a consequence the primary rational canonical form may change when the same matrix is considered over an extension field of ''F''. This article mainly deals with the form that does not require factorization, and explicitly mentions "primary" when the form using factorization is meant.
== Motivation ==

When trying to find out whether two square matrices ''A'' and ''B'' are similar, one approach is to try, for each of them, to decompose the vector space as far as possible a direct sum of stable subspaces, and compare the respective actions on these subspaces. For instance if both are diagonalizable, then one can take the decomposition into eigenspaces (for which the action is as simple as it can get, namely by a scalar), and then similarity can be decided by comparing eigenvalues and their multiplicities. While in practice this is often a quite insightful approach, there are various drawbacks this has as a general method. First, it requires finding all eigenvalues, say as roots of the characteristic polynomial, but it may not be possible to give an explicit expression for them. Second, a complete set of eigenvalues might exist only in an extension of the field one is working over, and then one does not get a proof of similarity over the original field. Finally ''A'' and ''B'' might not be diagonalizable even over this larger field, in which case one must instead use a decomposition into generalized eigenspaces, and possibly into Jordan blocks.
But obtaining such a fine decomposition is not necessary to just decide whether two matrices are similar. The rational canonical form is based on instead using a direct sum decomposition into stable subspaces that are as large as possible, while still allowing a very simple description of the action on each of them. These subspaces must be generated by a single nonzero vector ''v'' and all its images by repeated application of the linear operator associated to the matrix; such subspaces are called cyclic subspaces (by analogy with cyclic subgroups) and they are clearly stable under the linear operator. A basis of such a subspace is obtained by taking ''v'' and its successive images as long as they are linearly independent. The matrix of the linear operator with respect to such a basis is the companion matrix of a monic polynomial; this polynomial (the minimal polynomial of the operator restricted to the subspace, which notion is analogous to that of the order of a cyclic subgroup) determines the action of the operator on the cyclic subspace up to isomorphism, and is independent of the choice of the vector ''v'' generating the subspace.
A direct sum decomposition into cyclic subspaces always exists, and finding one does not require factoring polynomials. However it is possible that cyclic subspaces do allow a decomposition as direct sum of smaller cyclic subspaces (essentially by the Chinese remainder theorem). Therefore just having for both matrices some decomposition of the space into cyclic subspaces, and knowing the corresponding minimal polynomials, is not in itself sufficient to decide their similarity. An additional condition is imposed to ensure that for similar matrices one gets decompositions into cyclic subspaces that exactly match: in the list of associated minimal polynomials each one must divide the next (and the constant polynomial 1 is forbidden to exclude trivial cyclic subspaces of dimension 0). The resulting list of polynomials are called the invariant factors of (the ''K''()-module defined by) the matrix, and two matrices are similar if and only if they have identical lists of invariant factors. The rational canonical form of a matrix ''A'' is obtained by expressing it on a basis adapted to a decomposition into cyclic subspaces whose associated minimal polynomials are the invariant factors of ''A''; two matrices are similar if and only if they have the same rational canonical form.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Frobenius normal form」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.